Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Yonsei Medical Journal ; : 206-216, 2017.
Article in English | WPRIM | ID: wpr-126255

ABSTRACT

PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.


Subject(s)
Animals , Male , Rats , Acute Lung Injury/chemically induced , Angiopoietin-1/genetics , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Endotoxins , Genetic Therapy , Interleukin-10/metabolism , Interleukin-6/metabolism , Leukocyte Count , Lipopolysaccharides , Lung/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Neutrophils/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Umbilical Cord/cytology
2.
Journal of Korean Medical Science ; : 725-730, 2013.
Article in English | WPRIM | ID: wpr-80576

ABSTRACT

Cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) is an angiogenic factor for vascular angiogenesis. The aim was to investigate the effect of an intracavernosal injection of COMP-Ang1 on cavernosal angiogenesis in a diabetic rat model. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats made up the experimental group (1 yr old) and Long-Evans Tokushima Otsuka (LETO) rats made up the control group. The experimental group was divided into vehicle only, 10 microg COMP-Ang1, and 20 microg COMP-Ang1. COMP-Ang1 was injected into the corpus cavernosum of the penis. After 4 weeks, the penile tissues of the rats were obtained for immunohistochemistry and Western blot analysis. The immunoreactivity of PECAM-1 and VEGF was increased in the COMP-Ang1 group compared with the vehicle only group. Moreover, the expression of PECAM-1 and VEGF was notably augmented in the 20 microg Comp Ang-1 group. In the immunoblotting study, the expression of PECAM-1 and VEGF protein was significantly less in the OLEFT rats than in the control LETO rats. However, this expression was restored to control level after intracavernosal injection of COMP-Ang1. These results show that an intracavernosal injection of COMP-Ang1 enhances cavernous angiogenesis by structurally reinforcing the cavernosal endothelium.


Subject(s)
Animals , Male , Rats , Angiopoietin-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Blood Glucose/analysis , Blotting, Western , Body Weight , Cartilage Oligomeric Matrix Protein/genetics , Diabetes Mellitus, Experimental/pathology , Immunohistochemistry , Neovascularization, Physiologic/drug effects , Penis/metabolism , Rats, Long-Evans , Recombinant Fusion Proteins/biosynthesis , Vascular Endothelial Growth Factor A/metabolism
3.
Experimental & Molecular Medicine ; : 733-745, 2007.
Article in English | WPRIM | ID: wpr-21105

ABSTRACT

Inflammation of the asthmatic airway is usually accompanied by increased vascular permeability and plasma exudation. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage. Recently, we developed a soluble, stable, and potent Ang1 variant, COMP-Ang1. COMP-Ang1 is more potent than native Ang1 in phosphorylating the tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 receptor in lung endothelial cells. We have used a mouse model for allergic airway disease to determine effects of COMP-Ang1 on allergen-induced bronchial inflammation and airway hyper-responsiveness. These mice develop the following typical pathophysiological features of allergic airway disease in the lungs: increased numbers of inflammatory cells of the airways, airway hyper-responsiveness, increased levels of Th2 cell cytokines (IL-4, IL-5, and IL-13), adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), and chemokines (eotaxin and RANTES), and increased vascular permeability. Intravenous administration of COMP-Ang1 reduced bronchial inflammation and airway hyper-responsiveness. In addition, the increased plasma extravasation in allergic airway disease was significantly reduced by the administration of COMP-Ang1. These results suggest that COMP-Ang1 attenuates airway inflammation and hyper-responsiveness, prevents vascular leakage, and may be used as a therapeutic agent in allergic airway disease.


Subject(s)
Animals , Mice , Allergens/immunology , Angiopoietin-1/genetics , Asthma/prevention & control , Bronchial Hyperreactivity/physiopathology , Chemokines/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Recombinant Fusion Proteins/therapeutic use
4.
Journal of Korean Medical Science ; : 272-278, 2006.
Article in English | WPRIM | ID: wpr-162130

ABSTRACT

Angiogenesis, formation of new microvessels providing oxygen and nutrient supply, is essential for tumor growth. It is dependent on the production of angiogenic growth factors by tumor cells. Angiopoietin 1 (Ang-1) and 2 (Ang-2) and their common receptor, Tie2, are thought to be critical regulators of tumor angiogenesis. We examined expression of Ang-1, Ang-2, and their common receptor Tie2 mRNAs and proteins in gastric cancers using in situ hybridization and immunohistochemistry. We also investigated the relationship between their expression and differentiation of cancer cells, lymph node metastasis, tumor size, depth of cancer cell invasion, TNM staging and microvessel density (MVD). The expression of Ang-1, Ang-2, and Tie2 mRNA in cancer cells significantly correlated with the MVD (p<0.001, <0.001 and =0.019, respectively). Ang-1 and Tie2 positivity correlated with advanced gastric cancers (p<0.05) and larger cancers had higher positive rates of Ang-1, Ang-2, and Tie2 mRNA expression (p<0.001, =0.010 and =0.039, respectively). Significant positive correlations were also found between mRNA expression of Tie2 and those of Ang-1 and Ang-2 (p<0.01 and <0.001, respectively). These findings indicate that the expression of Ang-1 and Ang-2 is important for tumor angiogenesis, and suggest a possible role of autocrine/paracrine function of angiopoietin/Tie2 system in gastric cancer progression.


Subject(s)
Middle Aged , Male , Humans , Female , Aged , Adult , Stomach Neoplasms/blood supply , Receptor, TIE-2/genetics , RNA, Neoplasm/genetics , RNA, Messenger/genetics , Neovascularization, Pathologic , In Situ Hybridization , Immunohistochemistry , Gene Expression , Carcinoma, Signet Ring Cell/blood supply , Angiopoietin-2/genetics , Angiopoietin-1/genetics , Adenocarcinoma/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL